If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+4x-160=0
a = 17; b = 4; c = -160;
Δ = b2-4ac
Δ = 42-4·17·(-160)
Δ = 10896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10896}=\sqrt{16*681}=\sqrt{16}*\sqrt{681}=4\sqrt{681}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{681}}{2*17}=\frac{-4-4\sqrt{681}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{681}}{2*17}=\frac{-4+4\sqrt{681}}{34} $
| (12-y)+4y=30 | | 9x=28-5x | | 1/2+2x+5=100 | | 1/2+2x+5=1 | | 13n^2-16n-17=0 | | -6m-11=100 | | -12m-15=75 | | 5=9x-58 | | 2^x*2^(x+1)=10 | | (2^x)*2^(x+1)=10 | | (2^x)*2^x+1=10 | | 11-29=-6x | | 2^x*2^x+1=10 | | 9x=-40+85 | | 5^2x+4=5^x+1 | | 3a^2-9a-84=0 | | 16/2a=-8 | | 2x/8-x/10=19 | | (1+x)^8=1.8 | | (3y2+14)(3y2–14)=0 | | 4x^2-5+8x=0 | | 4(x•3)=180/3 | | 12x+25-35=14X+22X-2 | | (X+1)÷5=x÷10 | | 25(x+4)÷5=21×8÷7 | | X+5=2-3x+12 | | 12x^2+24x-96=0 | | x/1.5/3=x/12 | | x/9-8=-1 | | 4d*2(4d+7=-106 | | 4d+2(4d+7=106 | | -43=5c+4(2c+7) |